Contributed Talks
Reasoning Through Chess: How Reasoning Evolves from Data Through Fine-Tuning and Reinforcement Learning
Lucas Dionisopoulos, Prithviraj Ammanabrolu, Nicklas Majamaki
How can you get a language model to reason in a task it natively struggles with? We study how reasoning evolves in a language model – from supervised fine-tuning (SFT) to reinforcement learning (RL) – by analyzing how a set of theoretically-inspired datasets impacts language model performance in chess. We find that fine-tuning a model to directly predict the best move leads to effective RL and the strongest downstream performance – however, the RL step elicits unfaithful reasoning (reasoning inconsistent with the chosen move). Alternatively, training on multi-move trajectories yields comparable downstream performance with faithful reasoning and more stable RL. We show that RL induces a substantial positive shift in the distribution of move quality and reduces hallucination rates as a side effect. Finally, we find several SFT-checkpoint metrics – metrics spanning evaluation performance, hallucination rates, and reasoning quality – to be predictive of post-RL model performance. We release checkpoints and final models as well as training data, evaluations, and code which allowed us to surpass leading open-source reasoning models in chess with a 7B-parameter model.
GEPA: Reflective Prompt Evolution Can Outperform Reinforcement Learning
Lakshya A Agrawal, Shangyin Tan, Dilara Soylu, Noah Ziems, Rishi Khare, Krista Opsahl-Ong, Arnav Singhvi, Herumb Shandilya, Michael J Ryan, Meng Jiang, Christopher Potts, Koushik Sen, Alex Dimakis, Ion Stoica, Dan Klein, Matei Zaharia, Omar Khattab
Large language models (LLMs) are increasingly adapted to downstream tasks via reinforcement learning (RL) methods like Group Relative Policy Optimization (GRPO), which often require thousands of rollouts to learn new tasks. We argue that the interpretable nature of \textit{language} often provide a much richer learning medium for LLMs, compared with policy gradients derived from sparse, scalar rewards. To test this, we introduce GEPA (\textbf{Ge}netic-\textbf{Pa}reto), a prompt optimizer that thoroughly incorporates \textit{natural language reflection} to learn high-level rules from trial and error. Given any AI system containing one or more LLM prompts, GEPA samples system-level trajectories (e.g., reasoning, tool calls, and tool outputs) and reflects on them in natural language to diagnose problems, propose and test prompt updates, and combine complementary lessons from the Pareto frontier of its own attempts. As a result of GEPA’s design, it can often turn even just a few rollouts into a large quality gain. Across four tasks, GEPA outperforms GRPO by 10% on average and by up to 20%, while using up to 35x fewer rollouts. GEPA also outperforms the leading prompt optimizer, MIPROv2, by over 10% across two LLMs, and demonstrates promise as an agent discovery and inference-time search strategy for complex tasks including code optimization and abstract reasoning (ARC). We release our code at https://github.com/gepa-ai/gepa.
OpenThoughts: Data Recipes for Reasoning Models
Etash Kumar Guha, Ryan Marten, Sedrick Keh, Negin Raoof, Georgios Smyrnis, Hritik Bansal, Marianna Nezhurina, Jean Mercat, Trung Vu, Zayne Rea Sprague, Ashima Suvarna, Benjamin Feuer, Leon Liangyu Chen, Zaid Khan, Eric Frankel, Sachin Grover, Caroline Choi, Niklas Muennighoff, Shiye Su, Wanjia Zhao, John Yang, Shreyas Pimpalgaonkar, Kartik sharma, Charlie Cheng-Jie Ji, Yichuan Deng, Sarah M Pratt, Vivek Ramanujan, Jon Saad-Falcon, Jeffrey Li, Achal Dave, Alon Albalak, Kushal Arora, Blake Wulfe, Chinmay Hegde, Greg Durrett, Sewoong Oh, Mohit Bansal, Saadia Gabriel, Aditya Grover, Kai-Wei Chang, Vaishaal Shankar, Aaron Gokaslan, Mike A Merrill, Tatsunori Hashimoto, Yejin Choi, Jenia Jitsev, Reinhard Heckel, Maheswaran Sathiamoorthy, Alex Dimakis, Ludwig Schmidt
Reasoning models have made rapid progress on many benchmarks involving math, code, and science. Yet, there are still many open questions about the best training recipes for reasoning since state-of-the-art models often rely on proprietary datasets with little to no public information available. To address this, the goal of the OpenThoughts project is to create open-source datasets for training reasoning models. After initial explorations, our OpenThoughts2-1M dataset led to OpenThinker2-32B, the first model trained on public reasoning data to match DeepSeek-R1-Distill-32B on standard reasoning benchmarks such as AIME and LiveCodeBench. We then improve our dataset further by systematically investigating each step of our data generation pipeline with 1,000+ controlled experiments, which led to OpenThoughts3. Scaling the pipeline to 1.2M examples and using QwQ-32B as teacher yields our OpenThinker3-7B model, which achieves state-ofthe-art results: 53% on AIME 2025, 51% on LiveCodeBench 06/24-01/25, and 54% on GPQA Diamond – improvements of 15.3, 17.2, and 20.5 percentage points compared to the DeepSeek-R1-Distill-Qwen-7B. All of our datasets and models are available on REDACTED.
Learning Composable Chains-of-Thoughts
Fangcong Yin, Zeyu Leo Liu, Liu Leqi, Xi Ye, Greg Durrett
A common approach for teaching large language models (LLMs) to reason is to train on chain-of-thought (CoT) traces of in-distribution reasoning problems, but such annotated data is costly to obtain for every problem of interest. We want reasoning models to generalize beyond their training distribution, and ideally to generalize compositionally: combine atomic reasoning skills to solve harder, unseen reasoning tasks. We take a step towards compositional generalization of reasoning skills when addressing a target compositional task that has no labeled CoT data. We find that simply training models on CoT data of atomic tasks leads to limited generalization, but minimally modifying CoT formats of constituent atomic tasks to be composable can lead to improvements. We can train “atomic CoT” models on the atomic tasks with Composable CoT data and combine them with multitask learning or model merging for better zero-shot performance on the target compositional task. Such a combined model can be further bootstrapped on a small amount of compositional data using rejection sampling fine-tuning (RFT). Results on string operations and natural language skill compositions show that training LLMs on Composable CoT outperforms multitask learning and continued fine-tuning baselines within a given training data budget.